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Dynamics of flexible slender cylinders in axial flow 
Part 1. Theory 

By M. P. PAIDOUSSIS 
Chalk River Nuclear Laboratories, Atomic Energy of Canada Limited 

(Received 12 July 1965 and in revised form 21 March 1966) 

A general theory is presented to account for the small, free, lateral motions of 
a flexible, slender, cylindrical body immersed in fluid flowing parallel to the 
position of rest of its axis. The cylinder is either clamped or pinned at both ends, 
or clamped at the upstream end and free at the other; it lies in a horizontal plane 
wherein all motion is considered to be confined. It is shown that for sufficiently 
large flow velocities the cylinder may be subject to buckling and oscillatory in- 
stabilities in its first and higher flexural modes, respectively. It is shown that for 
cylinders with both ends supported the oscillatory instabilities are specifically 
caused by lateral frictional forces, and that in the absence of hydrodynamic-drag 
effects only buckling is possible. The same applies for cylinders supported at  the 
upstream end and with a very long, gradually tapering free end. The critical 
conditions of stability, expressed in dimensionless form, are evaluated extensively 
for clamped-free and pinned-pinned cylinders, illustrating the effect of the various 
system parameters on stability. 

1. Introduction 
In  the last decade the study of dynamics of flexible tubes containing flowing 

fluid has revealed a number of interesting phenomena. Niordson (1953) and 
Handelman (1955), dealing with tubes supported at both ends, reported that for 
sufficiently large flow velocities such systems buckle like columns under axial 
loading; this is usually referred to as buckling instability. Benjamin (1961), 
dealing with the general dynamical problem of articulated pipe systems convey- 
ing fluid, showed that, when such systems possess one free end, for sufficiently 
high flow velocities unstable oscillations may develop. Later Paidoussis (1963) 
demonstrated the existence of unstable oscillations of continuously flexible 
tubular cantilevers conveying fluid. 

In  this study we are concerned with the dynamics of flexible slender cylinders 
surrounded by, rather than containing, flowing fluid. Provided that the flow 
direction coincides with the axis of the cylinder at rest, then, for small motions 
about the position of rest, the forces exerted by the fluid in the two cases of 
external and internal flow are closely similar. This becomes evident on consider- 
ing that the forces exerted by the fluid, excepting those due to fluid friction, in 
both cases arise from lateral acceleration of the flowing fluid caused by lateral 
motion of the cylinder. In external flow, this acceleration is suffered by the virtual 
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or ‘associated’ mass of fluid (Munk 1924), which is dynamically equivalent to the 
contained mass of fluid in internal flow. Hawthorne (1961), taking advantage 
of this similarity, investigated the stability of flexible tubes towed in water and 
demonstrated that buckling instability is possible in such systems. 

The theoretical and experimental work reported here and in part 2 is intended 
as the f i s t  stage of a study into the mechanism of fluid-induced vibration of 
fissile-fuel elements in liquid-cooled nuclear-reactor channels. The work in this 
paper aims a t  determining the effect of steady flow on small lateral motions of 
cylindrical beams immersed in fluid flowing parallel to their axis, under various 
end constraints. Particular attention is focused on identifying the various pos- 
sible hydroelastic instabilities and on establishing criteria for stability, especially 
for cylinders pinned a t  both ends and cylinders clamped at the upstream end and 
free a t  the other. 

2. General theory Equation of small motions 

The system under consideration consists of a flexible cylindrical body of circular 
cross-section, immersed in an incompressible fluid of density p flowing with 
uniform velocity U parallel to the x-axis, which coincides with the position of 
rest of the cylinder axis. The cylinder is considered to be either fixed at the up- 
stream end and free at the other, as in figure 1, or supported at both ends. Except 
for a short tapering piece by which the cylinder is terminated at a free end (which 
will be considered with the boundary conditions), the cylinder has uniform 
cross-sectional area S ,  mass per unit length m and flexural rigidity E I .  The x- 
and y-axes lie in a horizontal plane wherein all motions of the cylinder are sup- 
posed to be confined. 

We consider small lateral motions of the cylinder about its position of rest, 
during which the angle of incidence i and &/ax remain sufficiently small so that 
(a )  no separation occurs in cross-flow, and ( b )  the fluid forces on each element of 
the cylinder may be assumed to be the same as those acting on a corresponding 
element of a long straight cylinder of the same cross-sectional area and inclination. 
Furthermore, the fluid is supposed to be contained by boundaries sufficiently 
distant from the cylinder to have negligible influence on its motion. We suppose 
that the cylinder is given a small lateral displacement y(x, t )  from the straight 
position. The resultant relative velocity between the cylinder and the fluid 
flowing past it (Lighthill 1960) is given by 

aY v(x,t)  = -+ u- 
at ax- 

Near the cylinder this lateral flow is identical with the two-dimensional potential 
flow that would result from the motion of the cylinder through fluid at rest with 
velocity v(x,t). We suppose that this flow has momentum Mv per unit length 
of cylinder, where M is the virtual mass of the fluid per unit length which is 
equal to pS for a circular cylinder, provided that the wavelength of motion is 
large in comparison with the diameter of the cylinder (Niordson 1953). The rate 
of change of this momentum per unit length is ([a/&] + U[a/ax]) (Mu) and gives 
rise to an equal and opposite lateral force on the cylinder (Lighthill 1960). 



Dynamics of flexible cylinders in flow. Part I 7 19 

We now consider a small element Sx of the cylinder, as shown in figure 2. 
Denoting the axial tension by T ,  and the viscous forces per unit length in the 
normal and longitudinal directions by $” and F’, respectively, the equations of 
motion in the two directions may be written as follows: 

- 
X 

and 

aT 
-+FL = 0,  
ax 

aQ a 2 ~  a ay 
ax (:t :x)2 at2 ax ( ax)  - - F N - M  -+U- y-m-+- T -  =o .  

FIGURE 1. Diagram of a clamped-free cylinder in axial flow. 

(31 

FIUURE 2. Forces and moments acting on an element of the cylinder. 

For small lateral motions of large wavelength, inertial forces in the axial direc- 
tion are of second order of magnitude and have been neglected. Similarly, the 
effects of angular acceleration of the element are neglected and the lateral shear 
force Q is, by elementary beam theory, 

The viscous forces acting on long inclined cylinders have been discussed by 
Taylor (1952). For turbulent boundary layers Taylor noted that viscous forces 
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will depend on the exact nature of roughness. Where it may be assumed that 
roughness consists of a number of projections pointing equally in all directions, 

FN = &ID U 2  (CD, sin2 i + C, sin i) he proposed that 

PL = &pDU2Cf cos i, and 

where D is the cylinder diameter, and C,, and C, are the coefficients associated 
with form and friction drag for a cylinder in cross-flow. 

For the motions considered here sin i < 1 and, as only linear terms will be con- 
sidered in the analysis, it is assumed that the viscous forces may be adequately 
represented by 

FN = +(M/D)  U2cNsini and FL = & ( M / D )  U2cT, ( 5 )  

in which p was eliininated by the use of M = $i-D2p. In  general, cLv and c2' are 
not equal. The angle i may be related to the normal and axial components of flow 
velocity by 

which substituted into (5) along with (1) yields 
i = sin-l(v/U), (6) 

&, = $c,(M/D) U ( g +  lJ2) and FL = $ ( M / D )  U ~ C , .  ( 7 )  

The axial tension may be found by substituting FL from (7) into (2) and inte- 
grating, assuming the upstream support always to coincide with x = 0. Where 
the downstream end is free, integration from x to x: = L yields 

T ( x )  = T(L) + &T M U 2 ( L  - x) /D.  

A non-zero value of T(L)  can only arise from form drag a t  the free end, which 
maybe consideredproportional to 4pU'S. Accordingly, we write T(L)  = &chMU2, 
where ch is the form drag coefficient and T(x) = &,MU2(L-x)/D+ &C; MU2.  
Where both ends are supported, we assume that the downstream support may 
be moved axially, before the flow is turned on, to impose on the cylinder a tension 
To. No further motion of the support is allowed, however, so that the overall 
extension from x = 0 to L caused by fluid friction is zero; this gives a force 
distribution along the length equal to 4cT MU2(@-x) /D.  Hence, by super- 
position we obtain in this case T ( x )  = To + -kcT MU2(& - x) /D.  In  general, there- 
fore, we mag write 

in which y = 0 if the downstream end is not supported, and y = 1 if it is. 

lateral motions 
Substituting now (4), (7) and (8) into (3), we obtain the equation of small 

It is noted that in this equation no account has been taken of damping forces in 
the material of the cylinder. 
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Boundary conditions 

When both ends of the cylinder are supported, then the boundary conditions 
applying to a beam must be satisfied. Accordingly, at a pinned end we must have 
y = a2y/ax2 = 0, and at a clamped end y = ay/ax = 0. 

If the downstream end is free, it  is assumed that the cross-sectional area tapers 
smoothly from S to zero in a distance sufficiently short, so that y and the lateral 
velocity v may be considered constant. This requirement allows the forces acting 
on the tapered end to be lumped and considered in appropriate boundary con- 
ditions (Hawthorne 1961). Equating the lateral shear and inertial forces to the 
rate of change of lateral momentum over the tapered end, say for L - 1 < x < L, 
we obtain 

The parameter f, which is equal to unity for slender-body, inviscid-flow theory, 
has been introduced because the theoretical lateral force at the free end may not 
be fully realized as a result of ( a )  the lateral flow not being truly two-dimensional, 
since the fluid has opportunity to pass around rather than over the tapered end 
(Munk 1924), and ( b )  boundary-layer effects (Hawthorne 1961). Accordingly, 
f will normally be less than unity. [Munk (1924) showed that the momentum of the 
lateral (inviscid) flow about an inclined rigid body of revolution is proportional 
to K ,  - Kz, where Kv and K,  are respectively the lateral and axial virtual masses 
of the fluid for the whole body. For ellipsoids of revolution Lamb (1932) calcu- 
lated that Kx/Ky  = 1 for L / D  = 1, and K,/K, = 0.022 for LID = 9.47. Thus 
for elongated bodies K,  may be neglected in comparison with K,. For the flexible 
body under consideration, however, we are dealing with distributed virtual 
masses along the length. Over the cylindrical portion of the body the axial virtual 
mass is, of course, identically zero, and the lateral virtual mass per unit length is 
M .  For the tapered end-piece, on the other hand, the lumped, lateral virtual 

mass Rye which equals M ( x )  dx is not necessarily much greater than the cor- 

responding axial virtual mass KTe since E/D is not always large. Accordingly, it  
is clear that f, which may now be assumed proportional to 1 - KXe/K,, may be 
considerably less than unity, quite apart from boundary-layer effects.] 

We now write M ( x )  = pS(x)  and m ( x )  = pbS(x )  and, since y and v are considered 
constant over the tapered end, (10) leads to 

L 

I L - I  

a2Y which yields - (m+fM)x , -  = 0, ax a t 2  

where 

46 Fluid Mech. 26 
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Furthermore, it  may be assumed that there is no bending moment at the free 
end, so that 

It is understood, of course, that l /L < 1 so that the boundary conditions may be 
considered to apply at x = L. 

a2ypX2 = 0. 

Dimensionless parameters 
Before proceeding with the analysis, it is desirable to express the problem in 
dimensionless terms and accordingly we put 

5 = x/L,  7 = y/L, r = ( E l / ( m  + M ) ) j  t/L2, 
/3 = M/(m+ M ) ,  I' = ToL2/EI, 6 = LID and u = (M/EI ) j  UL. 

Substituting into (9), we obtain 

In  dimensionless form, the boundary conditions for a body pinned at both ends 

(13) 
are 

and for a body clamped at the upstream end and free at  the other 

7 = a2q/ac2 = 0 a t  [ =  0 and [ =  1, 

I 7 = aqpg  = 0 at 6 = 0, 

where x = xJL. 

3. Analysis 
Let us consider motions of the cylinder of the form 

7 = Y(c) eior, (15) 

where w is a dimensionless frequency defined by w = ( ( M  + m)/EI}* QL2, in 
which Q is the circular frequency of motion. In  general !2 will be complex and 
the system will be stable or unstable accordingly as the imaginary part of w 
is positive or negative; in the case of neutral stability Im ( w )  = 0. Substituting 
(15) into (12), we obtain 

The system under consideration has an infinite number of degrees of freedom. 
The complete solution of the dynamical problem therefore involves the deter- 
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mination of the infinite set of frequencies of the normal modes of oscillation of 
the system, as continuous functions of u, /3, E C ~ ,  E C ~ ,  c>, f, etc. 

Two methods of solution are presented. In  the Gst, the deflexion of the 
cylinder in the flow is expressed by superposition of the infinite set of eigen- 
functions of a cylinder in still fluid. This method is useful in cases where the 
boundary conditions in flow and in still fluid are identical, i.e. when the 
cylinder is supported at both ends. For clamped-free cylinders, on the other 
hand, the solution is found by the second method, where the deflexion of the 
cylinder i s  expressed as a power series in 5. 

Solution by beam eigenfunction series 
Let Y ([) be given by m 

'(0 = C a,$,(<), 
r = l  

where the functions 

$,([) = A cos 4 6  + B sin A,.< + C cosh Ar t  + D sinh A,[ 

Pinned-pinned Clamped-clamped 
cylinders cylinders 

0 

0 

0 
4h2 A2 
- h4, (h,cr,-hs~,){(-l)'+"1} 

- *h2, +Ar 0;(4- &a;) 
TABLE 1. The constants b,,, c,, and d,8. 

are the beam eigenfunctions (Bishop & Johnson 1960), A, are the eigenvalues and 
A ,  B, C, D are constants determined by the boundary conditions. For a pinned- 
pinned beam, A = C = D = 0 andB = 1, while, for a clamped-free beam, A = - 1, 
B = a,, C = 1 and D = --c,., where 

cr = (cosh A, - cos A,)/(sinh A, - sin A). 
Substituting (17) into (16) and recalling that y = 1 for cylinders supported at 

both ends, we obtain 

m 

r = l  
5 [e $, + {G( 1 - ascr) - r) +; + te-4; 

+ {$E(c, + cT) u2 + 2Phwi) $: -t { - w2 -t &x,/?~uw~} $,I a, = 0. (18) 

We now define 
rn W a, 

9: = ci brs$s, $; = 2 crs$s, and 5$: = C drs$s, (19) 
n = l  s=1 s=1 

46-2 
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which substituted into (18) yield 

5 ( e + A ) A . + B  : b,,A+C s= 5 1 C,,sA+D s=1  : dT8Q,)a, = 0, (20) 
r= 1 s= 1 

where A = - d' + &c,,&uwi, B = &(cN + cT) u2 + 2p~uwi, C = (1 - &cT) u2 - I? 
and D = $ C C ~ U ~  were introduced for convenience. 

The b,,, c,, and d,, are determined from the properties of the eigenfunctions 
and the boundary conditions by methods similar to those discussed by Bishop 
& Johnson (1960). Their values, in terms of hi and vi, are given in table 1 for 
cylinders with pinned and clamped ends. 

Expanding (20), we now obtain an infinite number of linear equations: 

(A$ + A  + Bb,, + Cc,, + Dd,,) a1 + (Bb,, + Gc,, + Dd,,) a, 

(Bb,, + Cc,, + Dd,,) a, + (hi + A + Bb,, + Cc,, + Dd,,) a2 

........................................................................... etc. 

Since these equations are linear in a,, the condition for non-trivial solution is 
that the determinant of the coefficients of a, must vanish. This determinant is 
of infinite order, but, assuming that the system may be adequately described by 
synthesis of the n lowest eigenfunctions, it reduces to one of nth order. Thus an 
implicit expression may be obtained for w as a function of u, p, E C ~ ,  ecT and I?. 
The complexity of the determinantal equation, however, renders the explicit 
formulation of this functional relationship impracticable. On the other hand, for 
particular values of u, /3, ecN, ecT and r, clearly we can evaluate the complex 
frequency of any of the normal modes of the system by numerical methods. 

] (21) 

+ (Bb,, + Cc,, + Dd,,) a3 + . . . = 0, 

+ (Bb32 + Cc3, + Dd3,) a3 + . . . = 0, 

Solution by power series 

For convenience (16) is written in the form 

and, after substituting (15) into (14), the boundary conditions are 

and 

where a = u2( 1 - &cT - &,), since y = 0, 

b = & c ~ ~ u ~ ,  c = & E ( c ~ + c ~ ) u ~ + ~ P ~ u o ~ ,  
e = - d + ~ ~ ~ c ~ P ~ u w i ,  h = fuz and j = f ~ ~ u ~ i + { l + ( f - l ) ~ } x w , .  

Let us try the solution 
Y(5) = 5 Art?, 

r=o 
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where A, are constants to be determined. It is assumed that the motion of the 
cylinder may be described adequately by a conveniently small number of terms, 
in which case the series may be truncated at  a finite value of r,  say at r = n. 

Substituting (24) into (23), we obtain A,  = A ,  = 0 and 

130A, + 6A3 + 2(b + G) A ,  = 0, 

360A,+12aA4+(6b+3c)A,+eA4 = 0, 
........................................................................... 
n(n- 1) (n- 2) (n- 3) A,+ a(n-  2) (n- 3) An-., 

n 

n 

r=B 

r=4 

2A2+6A3+ C r (r - l )A ,  = 0, 

( 2 h + j ) A 2 + ( 6 + 3 h + j ) A , +  C [ ~ ( ~ - 1 ) ( ~ - 2 2 ) + r h + j ] A ,  = 0. 

From the first three equations it is evident that all the A ,  may be expressed as 
linear combinations of A ,  and A ,  alone. Consequently, (25) are linear equations 
in A ,  and A,, and the determinant of their coefficients must vanish for non- 
trivial solution. Hence, by this method also we obtain an implicit relation between 
o and u, p ,  ecN, etc. 

4. The frequency as a function of the flow velocity 
We suppose that for any given physical system the parameters p, E ,  cN,  cT and, 

where applicable, I? or f and c& can be determined and that they are all inde- 
pendent of the flow velocity. Using representative values of these parameters, 
the complex frequency of the three lower modes of a number of systems is calcu- 
lated, starting with u = 0 and increasing the flow velocity in small steps. The 
results demonstrate the general character of the dynamical behaviour of the 
system for varying u, illustrating some of the modes of instability to which it 
may be subjected. 

Computational method 

When u = 0, the allowable values of o are wholly real numbers, in the absence 
of damping forces. For a cylinder pinned a t  both ends, we have w = 772, 4772, 
9772, ..., etc. when I? = 0, which values relate to the first, second and higher 
modes of a pinned-pinned beam. For a cylinder clamped at one end and free at 
the other, the corresponding frequencies are those of a cantilever, i.e. w = 3-516, 
22.034, 61.697, etc., approximately, modified by the departure from cylindrical 
geometry at  the tapered free end. 

It is noted that both methods of solution lead to a vanishing determinant with 
complex terms. Accordingly, for a given value of u, Re ( w )  and Im (a) were deter- 
mined by systematic trial and error (see Gregory & Paidoussis 1966), such that 
the real and imaginary parts of the determinant went to zero simultaneously. The 
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calculations were done on the Bendix G-20 computer of the Chalk River Nuclear 
Laboratories. The computer calculated the complex frequency for each mode 
of a given system for increasing values of u, starting with u = 0 for which w is 
known at least approximately. The computation was repeated with an increasing 
number of terms in the series solution to ensure that the results converge to the 
desired accuracy. 

Pinned-pinned cylinder 
The complex frequency of the three lowest modes of a system with p = 0.10, 
ecN = E C ~  = 1 and I? = 0 is displayed as an Argand diagram in figure 3. It is 
noted that small flow velocities act to damp free oscillations of the system. As 

h 

3 
v 

E 
H 

Re ( w )  

FIGURE 3. The dimensionless complex frequency of the three lowest modes of a pinned- 
pinned cylinder (/3 = 0.1, ccN = ccT = 1, I? = 0) as a fkct ion of the dimensionless flow 
velocity u. 

the flow velocity increases, however, the system may become unstable in all three 
modes. The locus of the first mode bifurcates on the [Im (@)]-axis, one branch 
receding from the origin and the other approaching and eventually crossing it; 
this evidently indicates buckling instability (w  = 0). The instabilities associated 
with the second and third mode, on the other hand, which occur at  higher flow 
velocities than buckling, are oscillatory. 

The existence of a buckling instability is not unexpected in view of the close 
dynamical similarity between this system and those investigated by Niordson 
(1953) and Benjamin (1961), in which the flow is internal. This is not the case 
for oscillatory instabilities, which have been reported in systems with internal 
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flow only when they possess a free end (Benjamin 1961; Gregory & Paidoussis 
1966). 

In  all cases, Re (0) and I m  ( w )  converged to three significant figures by syn- 
thesis of the lowest six or seven beam eigenfunctions. 

FIGURE 4. The dimensionless complex frequency of the three lowest modes of a clamped- 
clamped cylinder (p = 0.1, ecN = ecT = 1, = 0) as a function of the dimonsionless 
flow velocity u. 

Clumped-clumped cylinder 

The complex frequency of the same cylinder but with the ends clamped is shown 
in figure 4, exhibiting basically the same behaviour for varying u as when the 
ends are pinned. In  this case, however, buckling does not occur and the second 
and third mode instabilities occur at higher Aow velocities. One of the loci 
corresponding to the first mode begins to approach the origin, but then, a t  
u z 10.5, it begins to recede further into the stable region (u = 11.1, Im ( w )  = 9.8). 
Another notable feature of this system is that the third mode goes back to the 
stable region after it first crosses over to the unstable one. The behaviour of this 
system in its first and third modes is not a feature of clamped-clamped systems 
exclusively; for various combinations of the system parameters, similar behaviour 
was observed in all three modes of pinned-pinned and clamped-free cylinders. 
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Clamped- free cylinder 

The complex frequency of a system with the upstream end clamped and the 
other free is shown in figure 5. In  this case also the loci of all three modes eventu- 
ally cross the [Re (a)]-axis into the unstable region. It is interesting to note that 
buckling instability is possible in this case, while this phenomenon does not occur 

FIGVRE 5. The dimensionless complex frequency of the three lowest modes of a clamped- 
free cylinder (/J' = 0.5, ecN = ecT = 1, c;. = 0, f = 0.8, x = 0.01) as a function of the 
dimensionless flow velocity U .  

when the flow is internal (Paidoussis 19,63), unless gravity is operative (Benjamin 
1961). After the system becomes unstable in its first mode, further increase in 
the flow velocity eventually causes it to regain stability (the locus re-crosses 
the origin from negative to positive Im (a)). This occurs at a flow velocity smaller 
than that required for second mode instability. 

In  this case, convergence to three significant figures required up to 50 terms of 
the power series. 

5. The mechanism of instability 
The mechanism underlying buckling instability may be illuminated by con- 

sidering the static equilibrium of the cylinder with both ends supported, which 
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is assumedto have momentarily taken an arbitrarybowed shape y ( z ) .  Eliminating 
the time-dependent terms in (9), we obtain 

( 2 7 )  
If the forces arising from fluid viscosity are neglected (cN = cT = 0), this equation 
reduces to the corresponding one for a pipe containing flowing fluid (Gregory 
& Paidoussis 1966). It is evident, therefore, that for sufficiently high fluid velocity 
the forces represented by the second term may overcome the flexural and tensile 
restoring forces, resulting in a monotonic increase in the amplitude of y (x ) .  
Actually, the mechanism of instability is more complex than suggested above, 
particularly if the cylinder has a free end, when the system is inherently non- 
conservative (cf. Benjamin 1961). Evidence of this will be given later, when i t  
will be seen that form drag at the free end may have a destabilizing effect on the 
system. 

For oscillatory instabilities, the condition of neutral stability is one of dynamic 
equilibrium where, in the course of one cycle of oscillation, the energy transfer 
from fluid to cylinder and vice versa exactly balance. When the former exceeds 
the latter, since the fluid stream may be regarded as a source of infinite energy, 
the amplitude increases without limit; in theopposite case oscillations are damped. 

Benjamin (1961) considered the mechanism of energy transfer in the related 
problem of fluid flowing in an articulated pipe system; he found that in motion 
over a time 0 to t, which concludes with. the system in its original state, if the 
downstream end is free, the energy gained by the pipes is 

A W  = - MiU(R2+ U=.R)dt ,  J: 
where Mi is the mass per unit length of the contained fluid and T and R are the 
tangential and position vectors a t  the end of the last pipe. It is evident that when 
U is small the first term in the integrand predominates over the second, and 
vibrations are damped (AW < 0). For sufficiently high U ,  however, if T and R 
are sufficiently out of phase to give a negative average value to 7. R, it  is possible 
for A W to become positive,in which case vibrationsareamplified. Thus, for ampli- 
fied vibrations, for the greater part of a cycle the last pipe must slope backwards 
to the motion of its free end, i.e. a ‘dragging’ motion must obtain. By looking a t  
the problem in terms of the Lagrangian or Hamiltonian methods, Benjamin 
was able to show that hW is the rate of working by the non-conservative part 
of the hydrodynamic forces and that this interpretation is not limited to periodic 
motions. 

Another important corollary of (28) is that, when the downstream end of the 
pipe system is also supported, we have A T  = 0. This means that oscillations in 
this case can be neither damped nor amplified by the action of the flow. Alter- 
natively we can say that the hydrodynamic forces are then wholly of conservative 

As remarked previously, the system under consideration here where the flow 
is external is closely similar to the one discussed above where the flow is internal, 

type. 
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as evidenced by the similarity in the equations of motion in the two cases (cf. 
Gregory & Paidoussis 1966). There are important differences, however. Thus 
frictional forces are operative in the case of external flow; also, a t  a free end the 
shear is generally not zero. Considering (9) we find that the rate of work 
done on the cylinder in the course of free periodic motions may generally be 
written as 

and over one period of oscillation t, the work done A W is found to be 

Applying the boundary conditions for cylinders supported only at the upstream 
end, we obtain 

A% = - ( l - f ) ~ ” M U ( y Z +  0 U i y ‘ ? i ) , d t - f c , S 1 ‘ S L ~ ( d a +  0 0  Uy’?j)dxdt, (29) 

and for cylinders supported a t  both ends 

Cylinders supported at both ends 

From (30) it  is evident that in the absence of hydrodynamic-drag effects we 
have AW, = 0. By analogy to the internal flow case discussed above we can 
say that, excluding the frictional forces, the hydrodynamic forces are purely of 
conservative type. In  terms of the complex frequency diagrams of 94, in the 
absence of frictional forces the frequency of all the modes follows the [Re (w)]-axis 
with increasing u, toward the origin; at the origin the locus bifurcates and the two 
branches continuealong the positive and the negative [Im (@)I-axis. Thuswe come 
to the important conclusion that oscillatory instabilities are entirely due to the 
effect of frictional forces, in the absence of which the only form of instability 
possible is buckling. More generally, all departures from the [Re (@)]-axis in any 
particularmode, except where Re ( w )  = 0, are entirely due to the effect of friction. 
In  fact, Im ( w )  is linearly dependent on the value of E C ~  for small values of u; 
thus, for u = 3 in the example of figure 3, we find that Im ( w )  = 0.155 when 
ecIv = 1, and Im ( w )  = 0.310 when E C ~  = 2. 

Moreover, it  appears that the stability conditions are virtually independent of 
the value of ecN, provided it is reasonably small (see figure 7 ) .  The onset of ampli- 
fied oscillations evidently corresponds t o  a change in the character of the mode a t  
a specified flow velocity as determined by the conservative forces in the system; 
then frictional effects, however small, cause amplification of the oscillation, 
whereas before the change occurred they caused damping. (This change in the 
character of the mode is essentially like the change from class B to class A 
behaviour discussed in general terms by Benjamin (1963).) 
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Inspecting (30) more closely, we observe that the condition of neutral stability 

We note that, for the right-hand side of (31) to be non-zero, different parts of the 
body must vibrate in quadrature, and this is an effect that can only be produced 
by the action of flow. (In the absence of flow, the normal modes for both ends 
pinned are of the form y = A sin (wt + 9) sin (nrx/L), where q5 is  independent of 
x ,  and the r.h.s. of (31) is zero.) However, if the solution is represented as the 
sum of a standing and a travelling wave, it is easy to see that the r.h.s. of (31) 
depends only on the amplitude of the travelling-wave component ; furthermore, 
the phase velocity of this component must be in the direction of flow for the 
r.h.s. of (31) to be positive. This character of amplified oscillation is corro- 
borated by the experiments of part 2 (Paidoussis 1966). 

Cylinders with only the upstream end supported 

From (29) we note that energy transfer between the cylinder and the fluid 
stream may be caused both by inviscid and by viscous hydrodynamic forces. The 
similarity between (28) and the first term of (29) is striking. One important dif- 
ference is that the first term of (29) vanishes when f = 1, and oscillatory instabili- 

f Complex frequency 

1 20.98 
0.8 21*08+0.1553: 
0.5 21-22 + 0.39% 
0 21.41 + 0.813i 

TABLE 2 

ties in this case, as for cylinders with both ends supported, occur (see figure 10) 
because of frictional forces. This is analogous to Lighthill’s (1960) findings, that a 
fish with a gradually tapering tail and no tail-fin (which corresponds to f = 1) 
cannot produce a net propulsive force; i.e. it  cannot swim. For f < 1, however, 
departures from the [Re (w)]-axis when U =l= 0 and oscillatory instabilities can 
occur quite independently of frictional forces. Thus, it  is no accident that the 
values of Im ( w )  are so much larger in figure 5 than in figures 3 and 4 for compar- 
able values of u. In  fact, for cN = cT = c k  = 0 we find that Im ( w )  is almost pro- 
portional to 1 - f for small u, as shown in table 2 (p  = 0.3, u = 1). 

If the frictional forces are considered to  play a secondary role t o  the inviscid 
hydrodynamic forces in determining the condition of neutral stability, by simi- 
larity to the case of internal flow we may expect the same ‘dragging’ type of 
motion of the free end during amplified oscillations. This was seen to be the case 
in the experiments of part 2. 
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6. The conditions of stability 
The results shown in figures 3-5 establish the existence of instabilities induced 

by flow. In  this section, the critical flow velocities for neutral stability and 
corresponding frequencies associated with these instabilities are calculated 
systematically, demonstrating the effect of the various system parameters 
p, B C ~ ,  E C ~ ,  P, etc., on the stability of the system. In view of the large number of 
these parameters and of the similarities noted in the behaviour of the system 
under different conditions of end constraint, extensive calculations are confined 
to pinned-pinned cylinders and clamped-free cylinders. Furthermore, since 
instability appears to occur first in the first and second modes, the conditions 
of stability associated with these two modes only are considered. 

For a given set of system parameters and for each mode, the values of u and 
Re ( w )  at the point of neutral stability, where Im ( w )  = 0, were determined essen- 
tially by the method given in 3 4 for determining Re ( w )  and Im ( w )  for given values 
of u. For buckling Re(w) = 0 also, and the calculation is further simplified; 
moreover, the problem in this case is independent of p and x. 

Pinned-pinned cylinders 

The dimensionless critical flow velocity for buckling ucb is shown in figure 6. 
It may be seen that externally applied tension (I? > 0) stabilizes the system, and 
compression (r < 0) destabilizes it. For I? = - m2, buckling occurs at  zero flow 
velocity, which coincides with Euler's (1933) result for buckling of long slender 
columns with pinned ends. 

If cT = *cN, increasing 8 or cLv and cT stabilizes the system, and for sufficiently 
large values of ecN no buckling occurs (e.g. ecN = 2ecT >/ 9.8, I' = 16). If cr = c N ,  
on the other hand, the system is less stable. Distributed longitudinal drag 
evidently has a destabilizing effect on buckling. Since the downstream support 
cannot slide axially, longitudinal drag tends to compress the downstream half 
of the cylinder and increase the tendency to buckle. 

The dimensionless critical flow velocity uco and the corresponding frequency 
w,, for second mode instability are shownin figures 7 and 8. We see that, provided 
ecN < 1,  it has virtually no effect on the conditions of stability as discussed in 
$5. The effect of the various system parameters on stability may be summarized 
as follows: (a )  externally applied tension stabilizes and compression destabilizes 
the system; ( b )  increasing both ecN and ecT usually stabilizes the system; (c) if 
cT = cN the system is more stable than if cT < cN.  

Clamped-free cylinders 
Figures 9-1 1 show that the stability of clamped-free cylinders depends strongly 
on the parameter f. Evidently, as the geometry of the free end departs from an 
ideally slender shape the system is stabilized quite effectively. In  some cases, 
as for E C ~  = ecT = 1.25, c& = 0, no buckling occurs a t  all iff 6 0.8; furthermore, 
in this example, if p > 0.86 no second mode instability is possible either. As 
used in this paper, f virtually controls the boundary conditions at the free end 
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FIGURE 8. The dimensionless critical flow velocity and frequency for second-mode un- 
stable oscillation of pinned-pinned cylinders (BCN = ecT = 1) showing the effect of P and 
I' on stability. 
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P 
FIGURE 10. The dimensionless critical flow velocity and frequency for second-mode 
unstable oscillation of clamped-free cylinders (mN = E C ~  = 1, c& = 0, x = 0.01), showing 
the effects off and p on stability. 

P 
FIGURE 11. The dimensionless critical flow velocity and frequency for second-mode 
unstable oscillation of clamped-free cylinders (f = 0.8, x = 0.01), showing the effects of 
ecN, E C ~  and c& on stability. -, - - - -, ch = 0; ---, c h  as shown. 
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(by determining the value of the shear force a t  x = L), and it is not surprising 
that it plays such a vital role on stability. 

The results shown in figures 9 and 11 indicate that increasing E C ~  and ccT 
stabilizes the system. It is of particular interest, however, that tension due to form 
drag (ch $. 0) has a destabilizing effect on buckling, as illustrated in figure 9 
for f = 0.8. This effect may be clarified by considering the analogous system of a 
taut string. The work done W in displacing the string a small distance y(x) is 
(Morse 1948) 

If the string, or cylinder, is supported at  both ends the first term vanishes and 
the work done is always positive. If, however, there is a free end, the first term, 
which may be negative, is generally finite and may prevail over the second for 
certain y(x). Increasing T ,  therefore, may have opposite effects on stability for 
flexible systems with one or both ends supported. 

In  figures 9-11 all calculations were done with x = 0.01. It turns out that, 
provided it remains small, x has a very small effect on stability, which is reason- 
able on physical grounds. 

Some further discussion on the work presented here is included in Part 2, 
where the experimental work in support of this theoretical investigation is 
presented. 

I am indebted to Dr T.Brooke Benjamin for many helpful suggestions by 
correspondence, particularly in connexion with 3 5,  and for his constructive 
criticism of the original version of the present paper. I am also grateful to Miss 
Fenella E. Bain for writing a complete set of complex algebra subroutines for 
the Bendix G-20 computer. 
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